
A Bit about Me: Rendering Systems

A Bit about Me: Rendering Systems

Hardware
  Pixar Image Computer & CHAP
  REYES Machine & FLAP

Software
  RenderMan
  Real-Time Shading Language
  Spark

A Bit about Me: & Beyond

Brook: Stream computing on graphics processors

Larrabee: An x86 architecture for visual computing

A Graphics Perspective on Co-Design

Pat Hanrahan

DOE Stanford PSAAP Center
Stanford Pervasive Parallelism Laboratory

(Supported by Sun/Oracle, AMD, NVIDIA, Intel, NEC)

Salishan Conference on High Speed Computing
April 25, 2011

Application

The Road to Point Reyes
Lucasfilm

R.E.Y.E.S. = Renders Everything You Ever Saw

Simulating the everyday world

Hardware

REYES Machine Goals (1986)

Pixels 3000 x 1667 (5 MP)
Depth complexity 4
Pixel area of a micropolygon 0.25
Number of micropolygons 80,000,000
FLOPs per micropolygon (minimum) 300
Total calculation 24 GFs
24 frames per second .576 TFs

Goal ~ 1 frame in 2 minutes – real-time was inconceivable

CPUs Waste Resources

19%/year 30:1

1,000:1

30,000:1

Graph courtesy of Bill Dally

The Capability Gap

GPUs Use Many Forms of Parallelism

Multi-
Core

Multi-
Thread

SIMD
Vector

“Extreme” Graphics Chip

16 cores x 32 SIMD functional units x 2 flops/cycle x 1 GHz = 1 TFLOP

Texture mapping must run at 100% efficiency

Challenging
Short inner loop (lots of branches)
Random memory access (texture map)
Very little temporal locality

Application-Hardware Co-Design

DCL t0.xy # Interpolate t0.xy
DCL v0.xyzw # Interpolate v0.xyzw
DCL_2D s0 # Declaration – no code
TEX1D r0, t0, s0 # TEXTURE LOAD!
MUL r1, r0, v0 # Multiply
MOV oC0, r1 # Store to framebuffer

GPU Multi-threading: Hide Latency

frag4 frag3 frag2 frag1
Run until stall at

texture fetch

Fermi: 48 threads x 16 cores x 32 SIMD ALUs = 24,576 tasks

NVIDIA Historicals
Year Product Tri rate CAGR Tex rate CAGR
 1998 Riva ZX 3m - 100m -
 1999 Riva TNT2 9m 3.0 350m 3.5
 2000 GeForce2 GTS 25m 2.8 664m 1.9
 2001 GeForce3 30m 1.2 800m 1.2
 2002 GeForce Ti 4600 60m 2.0 1200m 1.5
 2003 GeForce FX 167m 2.8 2000m 1.7
 2004 GeForce 6800 Ultra 170m 1.0 6800m 2.7
 2005 GeForce 7800 GTX 940m 3.9 10300m 2.0
 2006 GeForce 7900 GTX 1400m 1.5 15600m 1.4
 2007 GeForce 8800 GTX 1800m 1.3 36800m 2.3
 2008 GeForce GTX 280 48160m 1.3
2010 GeForce GTX 480 42000m 0.9
2011 GeForce GTX 580 49400m 1.2

 1.7 1.7

SGI Historicals

Year Product Fragment Rate Triangle Rate
1984 Iris 2000 100K - 0.8K -

1988 GTX 40M 4.5 135K 3.6

1992 RE 380M 1.8 2M 2.0

1996 IR 1000M 1.3 12M 1.6

 2.2 2.2

Performance of Z-buffered rendering

GPUs 10x More Efficient

CPU cores 2 out of order 10 in-order
Instructions per issue 4 per clock 2 per clock
VPU lanes per core 4-wide SSE 16-wide
L2 cache size 4 MB 4 MB
Single-stream 4 per clock 2 per clock
Vector throughput 8 per clock 160 per clock

20 times greater throughput for same area and power
½ the sequential performance

Larrabee: A many-core x86 architecture for visual computing, D. Carmean, E. Sprangle, T.

Forsythe, M. Abrash, L. Seiler, A. Lake, P. Dubey, S. Junkins, J. Sugerman, P. Hanrahan,

SIGGRAPH 2008 (IEEE Micro 2009, Top Pick)

Software

Software is Inefficient

A C program – base line
A ruby/php program – 100x slower
A well-written C program – 10x faster
A crazy assembly language program – 2x-5x faster yet

Big Challenge

Graphics hardware specialization(s)
Multiple implementations with different characteristics
Software needs to be optimized for each platform

The resulting software is
  not portable
  costly to develop

Heterogeneous Platforms

LANL IBM Roadrunner
 (Opteron + Cell)

Tianhe-1A
 (Xeon + Tesla M2050 +
 NUND 160GBps)

ORNL Titan

Even Bigger Challenges Ahead

Specialization leads to hybrid or heterogeneous systems
Heterogeneity leads to combinatorial complexity
Complexity makes it even harder to develop software

How Do We Handle Heterogeneity?

Program at a Higher-Level!

Graphics Libraries are High-Level

glPerspective(45.0);
for(…) {
 glTranslate(1.0,2.0,3.0);
 glBegin(GL_TRIANGLES);
 glVertex(…);
 glVertex(…);
 …
 glEnd();
}
glSwapBuffers();

OpenGL “Grammar”

<Scene> = <BeginFrame> <Camera> <World> <EndFrame>

<Camera> = glMatrixMode(GL_PROJECTION) <View>
<View> = glPerspective | glOrtho

<World> = <Objects>*
<Object> = <Transforms>* <Geometry>
<Transforms> = glTranslatef | glRotatef | …
<Geometry> = glBegin <Vertices> glEnd
<Vertices> = [glColor] [glNormal] glVertex

Advantages

Portability
  Runs on wide range of GPUs

Advantages

Portability
Performance

 Carefully designed to map efficiently to hardware
 “Driver-Compiler” uses domain knowledge
  Vertices/Fragments are independent
  Textures are read-only; texture filtering hw
  Efficient framebuffer scatter-ops
  …

Advantages

Portability
  Allows hardware innovation

Performance

Advantages

Portability
Performance
Productivity

  Graphics libraries are easy to learn and use

Advantages

Portability
Performance
Productivity

Having your cake and eating it too!

Can We Apply this Idea to

Scientific Computing?

Liszt
Z. DeVito, N. Joubert, M. Medina,

M. Barrientos, E. Elsen, S. Oakley,

J. Alonso, E. Darve, F. Ham, P. Hanrahan

“…the most technically advanced and perhaps
greatest pianist of all time… made playing
complex pieces on the piano seem effortless…”

Liszt: Solving PDEs on Meshes

val pos = new Field[Vertex,double3]	
val A = new SparseMatrix[Vertex,Vertex]	

for(c <- cells(mesh)) {	
 val center = avg(pos(c.vertices))	
 for(f <- faces(c)) {	
 val face_dx = avg(pos(f.vertices)) – center	
 for (e <- f edgesCCW c) {	
 val v0 = e.tail	
 val v1 = e.head	
 val v0_dx = pos(v0) – center	
 val v1_dx = pos(v1) – center	
 val face_normal = v0_dx cross v1_dx	
 // calculate flux for face …	
 A(v0,v1) += …	
 A(v1,v0) -= …	

Challenges in Compiling GP Language

Compiler needs to reason about
  Parallelism
  Locality
  Synchronization

Fundamentally, analyzing dependencies is hard
 1. Analyzing functions: A[i] = B[pow(2,i) / mod(i,4) + f(i)]
 2. Analyzing pointers: A[i] = *ptrA

Liszt Enables Dependency Analysis

Mesh neighborhood accessed through built-in functions
  Pattern of access defines stencil
  Stencil shape is fixed and can be determined by

static analysis

Fields accessed consistently during loops
  Field accesses are organized into “phases”
  Within a forall, either read-only, write-only or

reduce-only access pattern

Domain Decomposition / Ghost Cells
Given a program and a mesh,
Liszt automatically creates a
graph of mesh adjacencies
needed to run the algorithm

Graph is handed to ParMETIS
to determine optimal partition

Communication of information
in ghost cells is automatically
handed

Node 0

Owned
Cells

Scalable to Large Clusters

4-socket 6-core 2.66Ghz Xeon CPU per node (24 cores),
16GB RAM per node. 256 nodes, 8 cores per node

32

128

256

512

1024

32 128 256 512 1024

Sp
ee

du
p

Cores

Euler
23M cell mesh

Liszt
C++

32

128

256

512

1024

32 128 256 512 1024
Cores

Navier-Stokes
21M cell mesh

Liszt
C++

Runs Very Fast on GPUs
Tesla C2050 vs. 1 core Nehalem E5520 (2.26 Ghz)
Double Precision

0

5

10

15

20

25

30

35

40

Euler NS FEM SW

Sp
ee

du
p

ov
er

 S
ca

la
r (

x)

Applications

GPU Performance
cuda on tesla c2050

And Even SMPs

0

5

10

15

20

25

30

35

40

Euler NS FEM SW

Sp
ee

du
p

ov
er

 S
ca

la
r (

x)

Applications

Comparison between Liszt runtimes
pthreads on 8-core

mpi on 8-core
pthreads on 32-core

mpi on 32-core
cuda on tesla c2050

Performance

Productivity Completeness

The Ideal Parallel Programming Language

From Workshop on Concurrency for Application Programmers

Successful Languages

Performance

Productivity Completeness

Successful Languages

Performance

Productivity Completeness

?

Additional Possibility

Performance

Productivity Completeness

Domain
Specific

Frameworks
&

Languages

Wrap Up

Summary

Graphics systems require advanced simulation
Not having enough cycles forced us to be efficient
Both performance and portability are important
Leads to rapid evolution of innovative hardware

High-Level Abstractions

Applications are written using
  High-level frameworks: game engines
  Domain-specific languages: shading languages

Advantage of high level approach
  … makes programmers productive
  … allows efficient automatic parallelization

Careful Co-Design

This strategy works because of careful co-design of
  Applications (features)
  Algorithms
  Software
  Hardware

Thank you

